Enrollment No: _____ Exam Seat No: _____ C. U. SHAH UNIVERSITY Winter Examination-2019

Subject Name : Fluid Mechanics

	Subject Code : 4TE04FME1		Branch: B.Tech (Mechanical)			
	Semester	:: 4 Date: 13/09/2019	Time: 02:30 To 05:30	Marks: 7	0	
	 Instructions: (1) Use of Programmable calculator & any other electronic instrument is prohibited. (2) Instructions written on main answer book are strictly to be obeyed. (3) Draw neat diagrams and figures (if necessary) at right places. (4) Assume suitable data if needed. 					
Q-1	a) b) c) d) e) f) g) h) i) j) k) l) m) n)	 Attempt the following questions: Define: Specific Weight and Specific Volume. Define: Surface tension and Capillarity. State the Pascal's law. State the limitation of simple manometer. Differentiate between real and ideal fluid. Differentiate between one dimensional and two dimensional fluid flows. State the control volume and system. Write notable application of Navier- Stroke's equation. Write application of dimensional analysis. Differentiate between the fundamental and derived dimensions. Define Reynold's number. State various methods used for measuring of viscosity. Define Compressible flow in terms of mach number. State any four characteristics of turbulent flow. 				
Atte	mpt any f	our questions from Q-2 to Q-8				
Q-2	(A) (B)	Attempt all questions State the Newton's law of viscosity A plate, 0.04 mm distance from a force of 3.5 N/m^2 to maintain this spectrum.	and give examples of its applicat fixed plate, moves at 70 cm/s a beed. Calculate the fluid viscosity	tion. nd requires a y between the	(14) (07) (07)	
Q-3	(A)	Attempt all questions Derive an equation of pressure varia under the gravity.	tion with respect to vertical axis	in a fluid	(14) (07)	
	(B)	A horizontal venturimeter with inle mm is install to measure the disch connected the inlet gives reading of efficient of discharge is 0.96.	et diameter 140 mm and throat harge of water. The differentiat 130 mm of mercury. Find the di	diameter 70 e manometer scharge if co-	(07)	
			\sim		. 7	

Q-4		Attempt all questions	(14)
-	(A)	State the methods of dimensional analysis and describe any one method for	(07)
		dimensional analysis.	
	(B)	Explain dash-pot mechanism with neat sketch.	(07)
Q-5		Attempt all questions	(14)
	(A)	Derive the Hagen-Poiseullie equation stating the assumption made. Sketch	(07)
		velocity and shear distribution in pipe flow.	
	(B)	Derive Froude's model law for (a) Velocity (b) Time.	(07)
Q-6		Attempt all questions	(14)
	(A)	Explain Mach cone and Mach angle with help of sketch.	(07)
	(B)	Write a note on use of Moody diagram for calculating the head loss due to	(07)
		friction.	
Q-7		Attempt all questions	(14)
•	(A)	Explain fully turbulent flow.	(07)
	(B)	Explain velocity of sound for isothermal and adiabatic process.	(07)
Q-8		Attempt all questions	(14)
•	(A)	Derive an expression for discharge through a venturimeter and compare it with	(07)
		orifice meter for measuring of flow through pipes.	
	(B)	Explain stable, unstable and neutral equilibrium with reference to floating body.	(07)

